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Abstract

Tensor decompositions and tensor networks that factorize multi-dimensional data
into latent factors have become a powerful tool for big data analytics and machine
learning. However, time and space complexities of the algorithms grow rapidly with
the size of tensors. Exploiting parallelisms of tensor network learning operations
and accelerating them on many-core GPUs are promising. In this paper, we develop
efficient primitives for tensor network learning operations on GPUs by exploiting
tensor algorithm parallelism. First, we implement and optimize key operations to
improve resource utilization, including tensor matricization and matricized tensor
times Khatri-Rao product (MTTKRP), highly-parallel Jacobi-based singular value
decomposition (SVD), and batch operations. Second, we fully optimize the data
transfer, memory access and reduce memory footprint, even employ more efficient
calculation processes with smaller computational complexity. Thirdly, we support
several tensor networks learning operations, such a CP, Hierarchical Tucker (HT),
tensor-train (TT) and tensor-ring (TR) tensor decompositions. Finally, we evaluate
on a Tesla V100 GPU and tested tensors up to 1,200 × 1,200 × 1,200. Compared
with the TensorLab library, our implementation of CP decomposition achieves up
to 5.56× speedup. Compared with GPU baseline implementations, the proposed
GPU implementations of HT, TT and TR decompositions achieve up to 4.67×,
6.67× and 6.36× speedups, respectively.

1 Introduction

Tensor decompositions, the higher-order analogue to matrix decomposition (e.g., Singular Value
Decomposition (SVD), Principal Component Analysis (PCA), non-negative matrix decompoistion,
etc.), have became a powerful tool for mining cross-dimension relationships in large-scale multi-
dimensional data. Multi-dimensional data arrays in video processing, social networks are naturally
represented as tensors, and tensor (multiway) decompositions are employed to perform factor analysis
or compression. Tensor decompositions/factorizations have been widely used in big data analysis
[11], computer vision [12] [6], pattern recognition and deep learning [7][1][8][4][13], and genetic
analysis [5], etc. With the growing needs to process large amount of multi-way data in a real-time
manner, designing high-performance tensor decomposition has become a critical task.

Existing research in accelerating CP tensor decomposition has limitations. TensorLab [10] requires
long running time, which was not fully optimized for the GPU architecture. In this paper, we develop
high performance CP tensor decomposition on GPUs. We use the bottom-up method to optimize the
key operations first, and then accelerate the whole algorithm. Our contributions are summarized as
follows.
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Figure 1: Third-order CP (left) and HT (right) tensor decompositions algorithm.

• We implement key tensor operations, including tensor matricization, matricized tensor times
Khatri-Rao product (MTTKRP), and accelerations using tensor cores.

• We propose optimization strategies for memory access, reducing the amount of calculation,
reducing memory footprint, improving resource utilization, thereby improving algorithm
performance.

• We implement CP, HT, TT and TR tensor decompositions on GPUs, which achieve high
performance and the same accuracy as CPU.

• On a Tesla V100 GPU, we perform numerical experiments to evaluate our tensor network
learning operations. Compared with the TensorLab-GPU [10], CP decomposition achieves
up to 5.56× speedups. Compared with GPU baselines, our HT, TT and TR decompositions
achieve 4.67×, 6.67× and 6.36× speedups, respectively.

The remainder of this paper is organized as follows. Section 2 describes tensor network learning
operations and algorithms. Section 3 presents the implementations and optimizations. In Section 4,
we evaluate the performance on GPUs. The conclusions are given in Section 5.

2 Tensor Networks Learning Operations

Note that CP, HT, TT and TR tensor decompositions are typical forms of tensor networks.

2.1 Notions and Key Tensor Operations

We use uppercase boldface letters and uppercase calligraphic letters to denote matrices and tensors,
respectively, e.g., X ∈ RI×J , and X ∈ RI×J×K . We use .∗, ◦, � and ⊗ to denote Hadamard
(element-wise) product, outer product, Khatri-Rao product and Kronecker (tensor) product. We use
> and † to the matrix transpose and Moore-Penrose pseudo-inverse, respectively. Indices range from
1 to their capital letters, e.g., i = 1, ..., I or i ∈ [I]. The Frobenius norm of a tensor X ∈ RI×J×K is

defined as ‖X‖F =
√∑I

i=1

∑J
j=1

∑K
k=1 |Xijk|2.

Rank-one tensor: A tensor X ∈ RI×J×K has rank one if it is the outer product of three vectors.

Tensor matricization (tensor unfolding, flattening): The mode-n matricization of X ∈ RI1×I2×I3

is denoted by X(n), where the element (i1, i2, i3) is mapped to matrix element (in, j) for n = 1, 2, 3,

j = 1 +

3∑
k=1,k 6=n

(ik − 1)Jk with Jk =

k−1∏
m=1,m 6=n

Im. (1)

Matricized tensor times Khatri-Rao product (MTTKRP): For tensor X ∈ RI×J×K and given
matrices A,B,C, the mode-1, mode-2 and mode-3 MTTKRP is X(1)(C �B), X(2)(C �A) and
X(3)(B �A), respectively.
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Figure 2: Third-order TT (left) and TR (right) tensor decompositions algorithm.

Figure 3: Third-order CP and HT tensor decompositions.

2.2 CP Tensor Model and Algorithm

CP tensor decomposition [2], as shown in Fig. 3, factorizes a tensor into the sum of rank-one tensor
components. For a tensor X ∈ RI×J×K and target rank R, we have X ≈

∑R
r=1 Ar ◦Br ◦ Cr,

where Ar ∈ RI , Br ∈ RJ , Cr ∈ RK for r ∈ [R]. Compute a CP tensor decomposition that best
approximates X , i.e.,

argmin
X̂

‖X − X̂‖F (2)

where X̂ =
∑R

r=1 λrAr ◦Br ◦Cr and A ∈ RI×R,B ∈ RJ×R,C ∈ RK×R, respectively.

In Alg. 1, the alternating least square method (ALS) fixes all but one matrix and reduces the CP tensor
decomposition problem to a linear least-squares problem. In line 2, the factor matrices are randomly
initialized. Lines 3-7 are the iterative process and the algorithm updates the factor matrices (lines
4-6) alternatively. The algorithm terminates when the approximation error is below a pre-specified
threshold or it reaches a preset maximum number of iterations.

2.3 HT Tensor Model and Algorithm

Generally, the HT format is stored in the form of a binary tree T , where each branch is a hierarchical
division of the tensor mode set. For example the binary tree of a tensor X ∈ Rn1×n2×n3 is given in
Fig. 1. HT decomposition is to perform the singular value decomposition (SVD) on each child node
of the tree structure. Among these nodes, each leaf node stores the left singular vectors matrix. For
non-leaf nodes t, it stores a tensor Bt called transfer tensor, which satisfies:

Bt = Ut ×1 U
T
tl
×2 U

T
tr , (3)

where the Ut is the left singular vectors matrix of node t, and Utl , Utr are left singular vectors
matrices of the children of t. The ×1 and ×2 are tensor times matrix (TTM) or tensor contraction.
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Figure 4: An illustration of TT and TR decompositions for a d-th order tensor.

In Alg. 2, we first perform matricization on the tensor in different mode sets and use the matrix
X(t) to get the left singular vectors matrix Ut ∈ Rnt×rt in lines 1-4. In line 5, tensorizing means it
reshapes the matrix into a tensor. Secondly, we use (3) to calculate the transfer tensor B stored in the
non-leaf node. The algorithm is described in Alg. 1 proposed by [3] and we set rt = 0.2× nt.

2.4 TT Tensor Model and Algorithm

TT decomposition [9] expresses a tensor A ∈ Rn1×n2×n3 as contractions of three core tensors:

A = G(1) ◦ G(2) ◦ G(3), (4)

where G(k) ∈ Rrk−1×nk×rk is the k-th core tensor. The auxiliary indices [r0, r1, r2, r3] are the
tensor-train ranks (TT-ranks), and r0 = r3 = 1 for third-order tensors.

Alg. 3 describes the procedures of the third-order TT decomposition [9]. As shown in Fig.
2, the connection “leg" between two circles represents the contraction operation of two ten-
sors. Through the contraction of every small tensors, we can get the original tensor A. The
C = reshape(C(k−1), [rk−1nk,

∏3
i=k+1 ni]) operation changes the tensor C(k−1) to a matrix C with

rk−1nk rows and
∏3

i=k+1 ni columns. The G(k) = reshape(U , [rk−1, nk, rk]) operation changes
the matrix U to a tensor G(k) with rk−1 rows, nk columns, and rk in the third direction.

2.5 TR Tensor Model and Algorithm

TR decomposition [14], as shown in Fig. 2, represents a tensorA ∈ Rn1×n2×n3 with three third-order
latent tensors G(k) ∈ Rrk×nk×rk+1 , k = 1, 2, 3:

A = G(1) ◦ G(2) ◦ G(3),

where we also calculate the contraction between G(1) and G(3). Auxiliary indices [r1, r2, r3] are the
tensor-ring ranks (TR-ranks). Because of the trace characteristic of TR-format tensor, r4 = r1, which
leads to the main difference between the TT decomposition and the TR decomposition.

Alg. 4 describes the procedures of the third-order TR decomposition. Because of the ring-
shaped feature, the third-order TR decomposition needs to choose a start point. The C =
permute(reshape(SV T , [r1, r2, n2n3]), [2, 3, 1]) operation transposes the tensor dimensions from
[r1, r2, n2n3] to [r2, n2n3, r1].

3 Optimization of Key Tensor Operations

The horizontal, lateral, and frontal slices of a third-order tensor X are denoted as X (i, :, :), X (:, j, :),
and X (:, :, k), respectively. Alternatively, the k-th frontal slice X (:, :, k) is denoted as X (k).

3.1 Tensor Matricization

Tensor matricization is a fundamental operation in CP tensor decomposition. In Alg. ??, lines 4-6 need
to compute different mode matricizations X(1),X(2) and X(3). In conventional implementation,
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Figure 5: Block computation for the MTTKRP operation and tensor data access.

GPU allocates additional memory and performs explicit tensor matricization, which introduces
substantial memory and time cost.

A third-order tensor X ∈ RI×J×K is stored in GPU memory in slice-by-slice, column-major layout
using a 1D array x, where Xijk is stored at x[(k − 1)IJ + (j − 1)I + i]. In the traditional method,
in order to implement tensor contractions, we need to change the storage order of each element
of the tensor in the GPU, which needs extra time and space cost. We observe that different tensor
matricization can be obtained through different data access methods. First, the column-major storage
of mode-1 matricization X(1) ∈ RI×JK in memory is exactly the same as x. Second, by transposing
each slice of X , we obtain X(2). Third, the row-major storage of mode-3 matricization X(3) is
exactly the same as x. By exploiting these property, we are able to use X to represent the result of
tensor matrixization directly and avoid explicit tensor matricization to save computation and GPU
memory.

In CUDA programming, we obtain the three matricizations X(1),X(2),X(3) by different ways of
fetching the 1D data in the memory. In the cuBLAS library, cublasSgemm() and cublasSgemmBat-
chedStrided() are interfaces of matrix multiplication and parallel matrix multiplication. For mode-1
matricization X(1) ∈ RI×JK , we use cublasSgemm() and set the main dimension as I . For mode-2
matricization X(2) ∈ RJ×IK , we use cublasSgemmBatchedStrided() and set the leading dimension
to J , and the number of matrix multiplications to K. For mode-3 matricization X(3) ∈ RK×IJ , we
find that the column-major storage of X in 1D array is same as the transpose of X(3). Therefore, we
use cublasSgemm() and set the leading dimension as K. In general, through the access strategy, we
cleverly regard physical storage data as the form of logical storage we require.

3.2 Matricized Tensor Times Khatri-Tao Product (MTTKRP)

MTTKRP is a basic operation in tensor computing. The convention approach to compute MTTKRP
include the following three steps:

• Matricizing a tensor into a matrix: X →X(1), X(2), X(3);

• Calculating Khatri-Rao product and obtain (C �B), (C �A), (B �A);
• Executing matrix multiplication: (X(1)(C �B)), (X(2)(C �A)), (X(3)(B �A)).

We eliminate the tensor matricization in the first step through the technique in Section 3.1. Since in
the third step, tensor matricization results in a fat matrix and the Khatri-Rao product results in a tall
matrix, we use tensor core to accelerate this matrix multiplication.

3.2.1 Batching Block Computations onto Tensor Cores

In Alg. 1, the main while-loop in lines 4-6 performs three MTTKRP operations. This process is
time-consuming and becomes a bottleneck. As matrix multiplication can be calculated in a block
manner, we divide the large matrices into smaller matrices and batch the block matrix multiplications
onto tensor cores.

Tensor cores are novel computing units introduced in latest NVIDIA GPU architectures including
Volta and Turing. Compared with conventional CUDA cores, tensor cores are especially efficient
for accelerating the computation of block matrix multiplications. Tesla V100 GPU has 640 tensor

5



��������������������������
���

���

��

��

��

��

��

���

�
�





	
�
�


�
�
�
�
�


�
�


�
�
�
�

�
�
�

���������×���×����
��	�����×��

���	��
����
�����
�����������������

�

�

�

��

��

��

��

��
�������������������	��
����
�������������������������������	��
�����

�
�
�
�
�
�
�
�

�������	����	��
��������	�
���

���

��

��

��

��

��

���

�
�





	
�
�


�
�
�
�
�


�
�


�
�
�
�

�
�
�

���������×���×����
��	�����×��

���	��
����
�����
�����������������

�

�

�

�

�

	

��

�

�

�



�������������������	��
����
�������������������������������	��
����

�
�
�
�
�
�
�
�

��������������������������

���

���

���

��

��

��

��

��

���

���

���

�
�





	
�
�


�
�
�
�
�


�
�


�
�
�
�

�
�
�

���������×���×����
��	�����×��

���	��
�����
�����
�������������������

�

��

��

��

��

���

���

���

���

���
�������������������	��
����
�������������������������������	��
����

�
�
�
�
�
�
�
�

Figure 6: Running time and speedups of MTTKRP in three modes, respectively.

cores in total. The matrix multiplication of two 4 × 4 matrices can be calculated on a tensor core
at one time. Fig. 5 illustrates the computing of X(1)(C �B), where X(1) ∈ RI×JK , C ∈ RK×R

and B ∈ RJ×R. We divide the fat matrix X(1) and the tall matrix C � B into (IJK)/16 and
(JKR)/16 small blocks, respectively. Then, we carry out a total of I/4× (JK)/4× (R/4) block
multiplications and batch them onto 640 tensor cores. When one is calculated, the blocks in the queue
will immediately occupy the computing resources.

3.3 Batch Operations

In the HT decomposition algorithm, when updating the left singular values matrix Ut stored in the
leaf node, the updating steps of each node are the same. All we need is the left singular vectors matrix.
So we use the method of eigen decomposition to solve, because it has fewer parameters and time
consumption. First we calculate the intermediate matrix Ht with X(t) and XT

(t), and then use the
eigen decomposition to get Ut. In this step, the data used in each execution process is independent of
each other and has no dependencies. To improve GPUs utilization and algorithm performance, we
perform eigen decomposition parallelly through batch processing.

We need to perform eigen decomposition on each matrix Ht, and this process is repeated three
times. In the regular routine, these decompositions are conducted one by one sequentially on GPUs.
However, this way does not fully utilize hardware threads on GPUs. Instead, we use the routine
syevjBatched(·) which performs eigen decomposition using the Jacobi method for each Ht. The
parallelism of Jacobi method gives the GPU better performance on small and medium size matrices.
Moreover we configure the parameters in this routine to improve accuracy.

3.4 Memory Access Optimization

In general, the Ht is stored in the global memory for the eigen decomposition. However, compared
with the shared memory inside the streaming multiprocessor (SM) on GPUs, the GPU global memory
has higher latency and lower bandwidth. In order to batch the eigen decomposition, we need to
merge the matrix Ht into a large matrix. The Ht needs to be accessed multiple times, which causes
excessive time complexity. To improve performance, we use low-latency shared memory instead of
global memory to storage the Ht. We launch 3× n blocks at the same time and transfer the Ht from
the global memory to the shared memory. When combining the matrix Ht, the algorithm accesses
the shared memory 3× n times. Compared to global memory, using shared memory is much faster

4 Performance Evaluations

We run all experiments on a server with an NVIDIA Tesla V100 GPU and dual Intel Xeon E5-2640
V4 CPUs. The Tesla V100 GPU has 32 GB device memory, 5, 120 CUDA cores and 640 tensor cores.
Each CPU has 10 cores running at 2.4GHz. The operating system of the server is 64-bit Ubuntu
18.04.

We use running time as performance metric. The speedup of our GPU implementation over a
reference GPU implementation is calculated as: (running time of a reference GPU implementation) /
(running time of our GPU implementation). The compared GPU implementations are listed out as
follows
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Figure 7: Running time and speedups of CP (left) and HT (right) decomposition.

Figure 8: Running time and speedups of TT (left) and TR (right) decomposition.

• GPU Baseline: We provide baseline implementation on GPU using the BLAS and cu-
SOLVER libraries. This implementation does not utilize the optimization techniques in
Section 3.

• TensorLab-GPU [10]: TensorLab is a well-maintained MATLAB toolbox for tensor com-
putations. We run TensorLab on GPUs.

• Our GPU implementation (Ours): For the key tensor operations and CP tensor decom-
position algorithm, our implementations employ the optimization techniques in Section
3.

4.1 Key Tensor Operations

In this subsection, our experiments are running on Tesla V100 GPU. Running time is measured in log
scale. For the key tensor operation (MTTKRP), we report the kernel running time that do not include
the data transfer time between CPU and GPU. Because the tensor operation is normally called during
the computation process of the tensor decomposition algorithms and the data are already in the GPU
device memory.

Fig. 6 shows the running time and speedups of the mode-1 MTTKRP, mode-2 MTTKRP and mode-3
MTTKRP with varying tensor and matrix sizes, respectively. Our input is a third-order tensor I×I×I
and two matrices of the same size I ×R, which R is set to be 0.1× I and the corresponding outputs
are three tensors of the same size I ×R.
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In Fig. 6(a), compared with GPU Basline, our mode-1 MTTKRP using CUDA cores and tensor cores
achieves up to 1.84× and 5.34× speedups, respectively.

In Fig. 6(b), our mode-2 MTTKRP using CUDA cores and tensor cores achieves up to 1.04×
and 1.43× speedups, respectively. The reason for the low performance improvement than mode-1
MTTKRP is that mode-2 MTTKPR cannot fully avoid the tensor matricization operation.

In Fig. 6(c), our mode-3 MTTKRP using CUDA cores and tensor cores achieves up to 38.55× and
56.21× speedups, respectively. The reason is that the original tensor matricization in the operation
of mode-3 MTTKPR breaks the continuity of data access seriously. Eliminating such a tensor
matricization operation leads to this high performance improvement.

4.2 Third-order CP Tensor Decomposition

Fig .7 (left) shows the running time and speedups of the CP tensor decomposition. We test the
third-order tensor of size I × I × I varying from 100 × 100 × 100 to 1, 200 × 1, 200 × 1, 200.
Two implementations are compared: our GPU implementation and TensorLab-GPU [10]. Our GPU
implementation achieves up to 5.56× speedup versus the TensorLab-GPU [10].

4.3 Third-order HT Tensor Decomposition

Fig. 7 (right) shows the running time and speedups of the HT tensor decomposition. We test the
third-order tensor of size N ×N ×N varying from 100 × 100 × 100 to 1, 000 × 1, 000 × 1, 000.
The optimized GPU implementation achieves 4.67× speedups over the unoptimized GPU baseline.

4.4 Third-order TT and TR Tensor Decomposition

Fig. 8 shows the running time and speedups. We test the third-order tensor of size N × N × N
varying from 100× 100× 100 to 1, 200× 1, 200× 1, 200. Compared with the unoptimized GPU
baseline, the optimized GPU implementation achieves 6.67× and 6.36× speedups for third-order TT
and TR decompositions, respectively.

5 Conclusions

Tensor operations have attracted lots of attention in recent years. Tensor decompositions have
been widely used in big data analysis, computer vision, pattern recognition, and deep learning, etc.
However, due to the high computational complexity, existing implementations are not satisfactory in
terms of running time and memory consumption. In this paper, we optimized the computations of CP
tensor decomposition on many-core GPUs. We proposed optimization strategies for reduced memory
consumption to accelerate tensor operations. Compared with TensorLab-GPU running on a Tesla
V100 GPU, our implementation of CP tensor decomposition achieves up to a 5.56× speedup.
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